International Journal of Scientific & Engineering Research Volume 2, Issue 5, May-2011 1
ISSN 2229-5518

Implementation of RSA Cryptosystem
Using Verilog

Chiranth E, Chakravarthy H.V.A, Nagamohanareddy P, Umesh T.H, Chethan Kumar M.

Abstract-The RSA system is widely employed and achieves good performance and high security. In this paper, we use Verilog to
implement a 16-bit RSA block cipher system. The whole implementation includes three parts: key generation, encryption and
decryption process. The key generation stage aims to generate a pair of public key and private key, and then the private key will be
distributed to receiver according to certain key distribution schemes. Data security is achieved after the 64-bit input data are block
encrypted by RSA public key. The cipher text can be decrypted at receiver side by RSA secret key. These are simulated in NC
LAUNCH and hardware is synthesized using RTL Compiler of CADENCE. Netlist generated from RTL Compiler will be used to
generate IC.

Index Terms - Cadence, Cryptosystem, Decryption, Encryption, Implementation, Key Generation, Modular Exponentiation, Modular
Multiplication, RSA, Verilog.

2
1 INTRODUCTION
Steps involved in Implementation of RSA:
HE first public key scheme was developed in
1977 by Ron Rivest, Adi Shamir, and Len . . .
Adleman at MIT. Now Rivest-Shamir-Adleman TUEIESILZWQEES;]? Is taken to implement the RSA
(RSA) is the most widely accepted and P y '
|mplementeq| public key cr)_/ptosystem. The public 1. Choose two large prime numbers, p and q. Let
key system is based on using different keys, one . _ .
. . n=p*q, Let d(n) = (p-1)*(g-1).
key for encryption and a different but related key .
g - 2. Randomly choose a value e (1< e < d@(n)), which
for decryption. The whole process involves - - .
- - . is relative prime to ®(n) that gcd (e, @(n)).
computing the remainder after exponential and _ .
. . 3. Calculate d=e-1 mod ®(n), send public key (e, n)
modular operation of large number. Encryption - .
. . to transmitter and secret key (d, n) to receiver.
and decryption have the following form, for some . S _
. . ' 4. Transmitter encrypt the original message, C = M
plaintext block M and cipher text block C: - .
e mod n, then send cipher text to receiver.
C=Me mod n. i)lFieée:jvﬁ:o%e%ﬁ(tjcrl;?g\/t:)t(rt\eb >éri inal message
M = C dmod n. - 9 ge.
Generally, it includes a third party to generate a The_ rest of th? paper 1S orgam_zed as follows:
. - L Section 2 gives an overview of RSA
pair of public key and to distribute keys to
. . - . Implementation. Section 3 gives the simulation
transmitter and receiver. Transmitter and receiver
. results. Section 4 gives the conclusion. The final
should both know the value of n. The transmitter section aives the references used
has the knowledge of public key e, and only the g '
receiver knows the private key d. Thus, a public .
key of (e, n) and secret key (d, n) generated by 2 RSA Implementation
third party is distributed to transmitter and
receiver separately. For this algorithm to be The RSA algorithm was inverted by Rivest,
satisfactory for public-key encryption, the Shamir, and Adleman in 1977 and published in
following requirements must be met: 1978. It is one of the simplest and most widely
used public-key cryptosystems. Fig.1 summarizes
1. It is possible to find values of e, d, n that the RSA algorithm.
M~d*e mod n = M1 forall M <n.
2. It is relatively easy to calculate M”e mod n
and Cd for all values of M <n.
3. It is infeasible to determine d given e and n.
IJSER © 2011

http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 5, May-2011 2

ISSN 2229-5518

Key {7eneration

selectp, g p, q both prime, p™q

Calculate n =p*q

Calewlate ¢(n) = (p-1%(q-1)

select integer & grd(@in) g = 1; 1<e< d(n)

Caleulate d

Public key EU={g n}

Private key KR ={d n}
Encryption

Plaintext: M=n

Ciphertext: C=M (modn)
Decryption

Ciphertext: C

Plantext: M=C{modn)

Fig.1 The RSA algorithm

Rand FIFO Prime FIFO
Random Primality

Number :>:|:|:|:|:|:> Tester |:>:|]:|]:|

(Generator

n=pxq
eadome) Il TN g
2

!

Fig.2 The system architecture for RSA key
generation

The system architecture for key generation is
shown in Fig.2. A random number generator
generates 16-bit pseudo random numbers and
stores them in the rand FIFO. Once the FIFO is full,
the random number generator stops working until
a random number is pulled out by the primality
tester. The primality tester takes a random number
as input and tests if it is a prime. Confirmed
primes are put in the prime FIFO. Similarly to the
random number generator, primality tester starts
new test only when prime FIFO is not full. A lot of
power is saved by using the two FIFOs because
computation is performed only when needed.
When new key pair is required, the down stream
component pulls out two primes from the prime
FIFO, and calculates n and ¢(n). N is stored in a
register. o(n) is sent to the Greatest Common
Divider (GCD), where public exponent e is selected

such that gcd(p(n), €) = 1, and private exponent d
is obtained by inverting e modulo ¢(n). Eand d are
also stored in registers.

Once n, d, and e are generated, RSA
encryption/decryption is simply a modular
exponentiation operation. Fig.3 shows the RSA
encryption/decryption structure in hardware
implementation.

l

f — Modular — i
E Exponentiation ¢

e.d n,
Il

— Modular — i
[@ Exponentiation m

Fig.3 The RSA encryption/decryption structure

The core of the RSA implementation is how
efficient the modular arithmetic operations are,
which include modular addition, modular
subtraction, modular multiplication and modular
exponentiation. The RSA also involves some
regular arithmetic operations, such as regular
addition, subtraction and multiplication used to
calculate n and ¢(n), and regular division used in
GCD operation

2.1 Random Number Generator

Linear Feedback Shift Register (LFSR) is used to
generate random numbers. In theory, an n-bit
linear feedback shift register can generate a (2n -
1)-bit long random sequence before repeating.
However, an LFSR with a maximal period must
satisfy the following property: the polynomial
formed from a tap sequence plus the constant 1
must be a primitive polynomial modulo 2. We are
unable to find the primitive polynomial for a 16-bit
LFSR, so we implemented a 16-bit LFSR and used
its least significant 16 bits to generate 16-bit
random numbers. Fig.4 shows the structure of the
16-bit LFSR.

1JSER © 2011
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 5, May-2011 3

ISSN 2229-5518

913
&

o

—
cle . r

Fig.4 Structure of the 16-bit LFSR

2.2 GCD

After we get ¢(n), we need to find a small number
e with gcd(e(n),e) = 1, which indicates that e is
relative prime to o(n).

Extended Euclidean algorithm was implemented
to find gcd(p(n),e), if the gcd is 1, e and its
multiplicative inverse d are returned. The
following pseudo code shows Euclidean algorithm
and extended Euclidean algorithm.

Euclid(a,b)
A<=g; B<=b;
loop if B=0
Return A=gcd(a,b);
end if
R=AmodB;
A<=B;
B<=R;
goto loop;

Extended Euclid (m,b)
(A1, A2, A3) <= (1, 0, m); (B1, B2, B3) <= (0, 1, b);
loop: ifB3=0
return A3 = gcd(m,b);
end if
ifB3=1
return B3 = gcd(m,b);B2 = b-1 mod m;
end if
Q<=|A3/B3];
(T1,T2,T3) <= (Al- Q*B1, A2- Q*B2, A3 - Q*B3);
(A1, A2, A3) <= (B1, B2, B3); (B1, B2, B3) <=(T1, T2,
T3);
goto loop;
2.3 Encryption and Decryption

Modular Multiplication: We constructed modular
multiplication using shift-add multiplication
algorithm. Let A and B are two Kk-bit positive
integers, respectively. Let Ai and Bi are the ith bit
of A and B, respectively. The algorithm is stated as
follows:

Modular Multiplication:
Input: A, B, n
Output: M = A*B mod n

P<=A;
M <=0;
fori=0tok-1
ifBi=1
M <=(M + P) mod n;
end if
P <=2*P mod n;
end for
return M,

For a 16-bit modular multiplier, inputs A and B are
both 16 bits. However, B might be a small number
with a lot of leading 0s. In the implementation,
before getting into the shift-add iterations, we
search for the position of the first leading 1 in B,
and set (k-1) to be this position. By doing this, we
avoid unnecessary shift and modular operations,
making the multiplication faster when B is small.
We used Omura's method to correct the partial
product M and temporary value P when any of
them becomes greater than 216. The corrected M
and P may still greater than n, so before returning
M, we will do final correction on M to make sure
M is less than n.

Modular Exponentiation: The modular
exponentiation operation is simply an
exponentiation operation where modular
multiplication is intensively performed. We
implemented the 16-bit modular exponentiation
components using LR binary method, where LR
stands for the left-to-right scanning direction of the
exponent.

The following pseudo code describes the LR binary
algorithm.

Modular Exponentiation:
Input: A, B, n
Output: E = A® mod n

E<=1,
fori=k-1to0
if Bi =1
E <= A*E mod n;
end if
ifi =0
E <= E*E mod n;
end if

1JSER © 2011
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 5, May-2011 4

ISSN 2229-5518

end for
return E;

Similar to modular multiplication, we search for
the position of the first leading 1 in exponent B and
set (k - 1) to be the position. This avoids
unnecessary modular squaring operations. For
small exponent such as the public exponent e, the
modular exponentiation is much faster than big
exponent such as the private exponent d.

3 Simulation results

The Random number generator, Primality tester,
GCD, Encryption and decryption are written in
Verilog Code and simulated in NC Launch and
synthesized in RTL Compiler and Results are
mentioned below. Sections below gives the
respective simulation results.

3.1 Random number generator

The 16-bit random number generator implemented
in Cadence using the 16-bit LFSR is shown in Fig.5.

Fig.5 Simulated Waveform for Random number
generator in nclaunch

Fig.5 shows the waveform of the random odd
number generator which has generated few odd
numbers that is 1091, 5455 and 20863.

After using the path of setup.g and

slow_normal.lib and elaborating, the RTL view is
generated for random number generator.

3.2 Primality tester

The 16-bit Primality tester implemented in
Cadence is shown in Fig.6.

Fig.6 Simulated Waveform for Primality tester in
nclaunch

Fig.6 shows the waveform for primality tester in
which 37 is given as input and it checks whether
the number is prime or not, and resulted in giving
37 as prime number.

After using the path of setup.g and

slow_normal.lib and elaborating, the RTL view is
generated for Primality tester.

3.3 GCD

The 16-bit GCD (extended Euclidean algorithm)
implemented in Cadence is shown in Fig.7.

Fig.7 Simulated Waveform for GCD in nclaunch

Fig.7 shows the waveform for extended Euclidean
algorithm in which two inputs are given A3=72
and B3=5, the resulted output is the public key e=5
and the private key d=29.

After using the path of setup.g and

slow_normal.lib and elaborating, the RTL view is
generated for GCD.

3.4 Encryption and Decryption

The 16-bit Modular Multiplication implemented in
Xilinx ISE design suit is shown in Fig.8.

1JSER © 2011
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 5, May-2011 5

ISSN 2229-5518

Fig.8 Simulated Waveform for Modular
multiplication in Xilinx

Fig.8 shows the waveform for modular
multiplication module in which the input value is
A=79, B=83 and N=58, the resulted output is M=3.

The 16-bit Encryption module implemented in
Cadence is shown in Fig.9,10.

Mo .. Do, ot 5 | WA

Fig.9 Simulated Waveform for encryption in
nclaunch

Fig.9 shows the waveform for encryption module
in which the input value is e=5, n=91 and plain text
p=8, the resulted output is the encrypted cipher
text m=8.

Fig.10 RTL view of encryption

After using the path of setup.g and
slow_normal.lib and elaborating, the RTL view
generated for Encryption is shown in Fig.10.

The 16-bit decryption module implemented in
Cadence is shown in Fig.11,12.

Fig.11 Simulated Waveform for decryption in
nclaunch

Fig.11 shows the waveform for decryption module
in which the input value is d=29, n=91 and cipher
text p=8, the resulted output is the encrypted plain
text m=8.

1JSER © 2011
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 5, May-2011 6

ISSN 2229-5518

Fig.12 RTL view of decryption
After using the path of setup.g and

slow_normal.lib and elaborating, the RTL view
generated for decryption is shown in Fig.12

3.5 Top Module (RSA)

The 16-bit Entire RSA Module implemented in
Xilinx ISE design suit is shown in Fig.13.

TR Shix |

Fig.13 Simulated Waveform for Top module (RSA)
in Xilinx

Fig.13 shows the waveform of the Top module of
entire RSA. Here the random prime number
generated are 101 and 43 which are P and Q ie
P=101 and Q=43. After getting P and Q, n and ®(n)
are calculated ie n=4340 and ®(n)=4200. And
public key e is selected by random prime number
as e=11l. GCD checks whether e and ®(n) are
relatively prime or not by getting the GCD as 1,
and using Extended Euclidean algorithm d is
calculated as d=2291. Now the plain text M=88 is
given, and by using e and n, after encryption we
get the cipher text C=586. Now by using d, n and

the cipher text, after decryption we got back the
plain text P=88.

4 Conclusion

In this, we implemented a 16-bit RSA circuit in
Verilog. It is a full-featured RSA circuit including
key generation, data encryption and data
decryption. In our Verilog implementation of RSA,
we have implemented GCD algorithm using
Euclidean algorithm, random number generator
using LFSR and Encryption and Decryption using
Modular multiplication and modular
exponentiation algorithms (L-R binary algorithms).
Each sub-component and top module of RSA was
simulated in Cadence/Xilinx and proved
functionally correct. Netlist were generated which
will be used to generate IC. The total area required
for encryption and decryption is 6060nm.

We can gain more security than the other
strategy because we use the random numbers. And
our implementation can easily extend to large bits
such as 256 or 1024 or even longer. Future work
has to be carried out on Cadence and xilinx to
implement in FPGA and to generate IC.

References

[1] R.L.Rivest, A.Shamir, and L. Adleman, “A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems”,
Communications of the ACM 21 (1978)

[2] Behrouz A.Forouzan, “Cryptography and Network Security”,
Tata McGraw Hill, Special Indian Edition 2007.

[3] William Stallings, ““Cryptography and Network Security”,
Prentice-Hall of India private limited, Third Edition 2004.

[4] Neal Koblitz, “A Course in Number Theory and
Cryptography”, Springer, Second Edition 2000.

[5] Implementing the Rivest, Shamir, Adleman cryptographic
algorithm on the Motorola 56300 family of digital signal
processors.
[http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00535035]
[6] Modular Arithmetic for RSA Cryptography.
[Courtesy:http://gtk.hopto.org:8089/MODULARRSA .pdf]

[7] RSA Encryption
[Courtesy:http://www.geometer.org/mathcircles/RSA.pdf]

[8] Implementing a 1024-bit RSA on FPGA.
[Courtesy:http://www.arl.wustl.edu/~jl1/education/cs502/course_p
roject.htm].

[9] Ridha Ghayoula, EIAmjed Hajlaoui, Talel Korkobi, Mbarek
Traii, Hichem Trabelsi, “FPGA Implementation of RSA
Cryptosystem”, International Journal of Engineering and Applied
Sciences 2:3 2006.

[10] Tzong-Sun Wu, Han-Yu Lin,” Secure Convertible
Authenticated Encryption Scheme Based on RSA”, Informatica 33
(2009) 481-486.

[11] Guilherme Perin, Daniel GomesMesquita, and Jo"ao
BaptistaMartins, “MontgomeryModularMultiplication on
Reconfigurable Hardware: Systolic versus Multiplexed
Implementation”, Hindawi Publishing Corporation International
Journal of Reconfigurable Computing Volume 2011.

1JSER © 2011
http://www.ijser.org

http://www.ijser.org/
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00535035

International Journal of Scientific & Engineering Research Volume 2, Issue 5, May-2011 7

ISSN 2229-5518

[12] Muhammad |I. lIbrahimy, Mamun B.l. Reaz, Khandaker
Asaduzzaman and Sazzad Hussain, “FPGA Implementation of RSA
Encryption Engine with Flexible Key Size”, International Journal
of Communications.

[13] Chung-Hsien Wu, Jin-Hua Hong and Cheng-Wen Wu, “VLSI
Design of RSA Cryptosystem Based on the Chinese Remainder
Theorem”, Journal of Information Science and Engineering 17,
967-980 (2001).

[14] Md. Ali-Al-Mamun, Mohammad Motaharul Islam, S.M.
Mashihure Romman and A.H. Salah Uddin Ahmad, *“ Performance
Evaluation of Several Efficient RSA Variants”, IJCSNS
International Journal of Computer Science and Network Security,
VOL.8 No.7, July 2008

[15] Ramzi A. Haraty, N. El-Kassar and Bilal Shibaro, “A
Comparative Study of RSA Based Digital Signature Algorithms”,
Journal of Mathematics and Statistics 2 (1): 354-359, 2006.

[16] Yi-Shiung Yeh, Ting-Yu Huang, Han-Yu Lin and Yu-Hao
Chang, “A Study on Parallel RSA Factorization”, Journal of
Computers, vol. 4, no. 2, February 2009.

[17] D. Boneh and H. Shacham, “Fast Variants of RSA”,
CryptoBytes, Vol. 5, No. 1, pp. 1-9, 2002.

Authors

Chiranth E is currently pursuing
B.E degree in Electronics and
Communication Engineering in
Bahubali College of Engineering,
Shravanabelagola, India. Under
Visvesvaraya Technological
University, Belgaum, India.

! Email: chiru_bornfree@yahoo.co.in

Chakravarthy H.V.A is currently
pursuing B.E degree in Electronics
and Communication Engineering in
Bahubali College of Engineering,
Shravanabelagola, India. Under
Visvesvaraya Technological
University, Belgaum, India.

Email:
abhishekchakravarthy@gmail.com

Nagamohanareddy P is currently
pursuing B.E degree in Electronics
and Communication Engineering in
Bahubali College of Engineering,
Shravanabelagola, India. Under
Visvesvaraya Technological
University, Belgaum, India.

Email: mohan.reddy79@yahoo.com

" Umesh T.H is currently pursuing
B.E degree in Electronics and
Communication Engineering in
Bahubali College of Engineering,
Shravanabelagola, India. Under
Visvesvaraya Technological
University, Belgaum, India.

Email: umeshdeepu@gmail.com

% Chethan Kumar M received his B.E
degree in Electronics and
ks Communication Engineering in
B Bahubali College of Engineering,
% Shravanabelagola, India. Under VTU
¥ Belgaum. Currently he is working as a
lecturer in Electronics and
Communication Department, Bahubali
College of Engineering.

Email: chethankumar_m@yahoo.co.in

1JSER © 2011
http://www.ijser.org

http://www.ijser.org/
mailto:chiru_bornfree@yahoo.co.in
mailto:abhishekchakravarthy@gmail.com
mailto:mohan.reddy79@yahoo.com
mailto:umeshdeepu@gmail.com
mailto:chethankumar_m@yahoo.co.in

